Advertisements
Advertisements
प्रश्न
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
उत्तर
Given that,
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
Differentiating both the given parametric functions w.r.t. t
`"dx"/"dt" = 1 - 1/"t"^2`, `"dy"/"dt" = 1 + 1/"t"^2`
∴ `"dy"/"dx" = (("dy")/("dt"))/(("dx")/("dt"))`
= `(1 + 1/"t"^2)/(1 - 1/"t"^2)`
= `("t"^2 + 1)/("t"^2 - 1)`
Hence, `"dy"/"dx" = ("t"^2 + 1)/("t"^2 - 1)`.
APPEARS IN
संबंधित प्रश्न
If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`
If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = (sin^3t)/sqrt(cos 2t), y = (cos^3t)/sqrt(cos 2t)`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a sec θ, y = b tan θ
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
If `x = acos^3t`, `y = asin^3 t`,
Show that `(dy)/(dx) =- (y/x)^(1/3)`
IF `y = e^(sin-1x) and z =e^(-cos-1x),` prove that `dy/dz = e^x//2`
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
Differentiate `x/sinx` w.r.t. sin x
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
If y `= "Ae"^(5"x") + "Be"^(-5"x") "x" "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.