मराठी

If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find dy/dx - Mathematics

Advertisements
Advertisements

प्रश्न

If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 

उत्तर

x = a sin 2t (1 + cos 2t)

y = b cos 2t (1 – cos 2t)

`dx/dt=2acos2t(1+cos2t)+asin2t(-2sin2t)`

`=2acos2t+2acos^2 2t-2a sin^2 2t`

`=2a cos2t+2a cos4t`

`dy/dt=-2dsin2t(1-cos2t)+bcos2t(2sin2t)`

`=-2bsin2t+2b sin2tcos2t+2b cos2t sin2t`

`=-2b sin2t+4b sin2tcos2t`

`=-2bsin2t+2bsin4t`

`(dy/dt)/(dx/dt)=(-2bsin2t+2bsin4t)/(2a cos2t+2a cos4t)`

`dy/dx=(-2bsin2t+2bsin4t)/(2a cos2t+2a cos4t)`

`|dy/dx|_(t=pi/4)=(-2bsin((2pi)/(4))+2bsin((4pi)/4))/(2a cos((2pi)/4)+2a cos((4pi)/4))`

`=>|dy/dx|_(t=pi/4)=(-2bsin(pi/2)+2bsinpi)/(2a cos(pi/2)+2a cospi)`

`=>|dy/dx|_(t=pi/4)=(-2b)/(-2a)=b/a`

`therefore |dy/dx|_(t=pi/4)=b/a`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) All India Set 2

संबंधित प्रश्‍न

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


find dy/dx if x=e2t , y=`e^sqrtt`


If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If x=at2, y= 2at , then find dy/dx.


If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx  at " "θ =pi/4`  is ________


If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = 4t, y = 4/y`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = (sin^3t)/sqrt(cos 2t),  y  = (cos^3t)/sqrt(cos 2t)`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If `x = acos^3t`, `y = asin^3 t`,

Show that `(dy)/(dx) =- (y/x)^(1/3)`


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×