Advertisements
Advertisements
प्रश्न
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
उत्तर
x = a sin 2t (1 + cos 2t)
y = b cos 2t (1 – cos 2t)
`dx/dt=2acos2t(1+cos2t)+asin2t(-2sin2t)`
`=2acos2t+2acos^2 2t-2a sin^2 2t`
`=2a cos2t+2a cos4t`
`dy/dt=-2dsin2t(1-cos2t)+bcos2t(2sin2t)`
`=-2bsin2t+2b sin2tcos2t+2b cos2t sin2t`
`=-2b sin2t+4b sin2tcos2t`
`=-2bsin2t+2bsin4t`
`(dy/dt)/(dx/dt)=(-2bsin2t+2bsin4t)/(2a cos2t+2a cos4t)`
`dy/dx=(-2bsin2t+2bsin4t)/(2a cos2t+2a cos4t)`
`|dy/dx|_(t=pi/4)=(-2bsin((2pi)/(4))+2bsin((4pi)/4))/(2a cos((2pi)/4)+2a cos((4pi)/4))`
`=>|dy/dx|_(t=pi/4)=(-2bsin(pi/2)+2bsinpi)/(2a cos(pi/2)+2a cospi)`
`=>|dy/dx|_(t=pi/4)=(-2b)/(-2a)=b/a`
`therefore |dy/dx|_(t=pi/4)=b/a`
APPEARS IN
संबंधित प्रश्न
If `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that" dy/dx = [-99x^2]/[101y^2]`
find dy/dx if x=e2t , y=`e^sqrtt`
If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and hence, find dy/dx if x=a cost, y=a sint
If x=at2, y= 2at , then find dy/dx.
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that `dy/dx=β/αtan t`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (θ – sin θ), y = a (1 + cos θ)
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = (sin^3t)/sqrt(cos 2t), y = (cos^3t)/sqrt(cos 2t)`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
If `x = acos^3t`, `y = asin^3 t`,
Show that `(dy)/(dx) =- (y/x)^(1/3)`
IF `y = e^(sin-1x) and z =e^(-cos-1x),` prove that `dy/dz = e^x//2`
The cost C of producing x articles is given as C = x3-16x2 + 47x. For what values of x, with the average cost is decreasing'?
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.