Advertisements
Advertisements
Question
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
Solution
x = a sin 2t (1 + cos 2t)
y = b cos 2t (1 – cos 2t)
`dx/dt=2acos2t(1+cos2t)+asin2t(-2sin2t)`
`=2acos2t+2acos^2 2t-2a sin^2 2t`
`=2a cos2t+2a cos4t`
`dy/dt=-2dsin2t(1-cos2t)+bcos2t(2sin2t)`
`=-2bsin2t+2b sin2tcos2t+2b cos2t sin2t`
`=-2b sin2t+4b sin2tcos2t`
`=-2bsin2t+2bsin4t`
`(dy/dt)/(dx/dt)=(-2bsin2t+2bsin4t)/(2a cos2t+2a cos4t)`
`dy/dx=(-2bsin2t+2bsin4t)/(2a cos2t+2a cos4t)`
`|dy/dx|_(t=pi/4)=(-2bsin((2pi)/(4))+2bsin((4pi)/4))/(2a cos((2pi)/4)+2a cos((4pi)/4))`
`=>|dy/dx|_(t=pi/4)=(-2bsin(pi/2)+2bsinpi)/(2a cos(pi/2)+2a cospi)`
`=>|dy/dx|_(t=pi/4)=(-2b)/(-2a)=b/a`
`therefore |dy/dx|_(t=pi/4)=b/a`
APPEARS IN
RELATED QUESTIONS
find dy/dx if x=e2t , y=`e^sqrtt`
If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`
If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that `dy/dx=β/αtan t`
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = (sin^3t)/sqrt(cos 2t), y = (cos^3t)/sqrt(cos 2t)`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a sec θ, y = b tan θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
If `x = acos^3t`, `y = asin^3 t`,
Show that `(dy)/(dx) =- (y/x)^(1/3)`
If X = f(t) and Y = g(t) Are Differentiable Functions of t , then prove that y is a differentiable function of x and
`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`
Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
Derivative of x2 w.r.t. x3 is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
If y `= "Ae"^(5"x") + "Be"^(-5"x") "x" "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.