English

If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx. x=sin3tcos2t, y =cos3tcos2t - Mathematics

Advertisements
Advertisements

Question

If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = (sin^3t)/sqrt(cos 2t),  y  = (cos^3t)/sqrt(cos 2t)`

Sum

Solution

Here x = `(sin^3t)/(sqrtcos 2t)`

`y = (cos^3 t)/ (sqrtcos 2t)`

Differentiating (1) & (2) w.r.t.t, we get,

`dx/dt = (sqrtcos2t d/dt  sin^3 t - sin ^3 t d/dt (sqrt cos2t))/(cos2t)`

 `= ((sqrt cos2t) 3 sin^2 t cos t - sin^3 t. 1/(2 sqrtcos2t) . (-sin 2t).2)/`

`= (sqrt cos 2t  3 sin^2 t cos t + (sin^3 t sin 2t)/(sqrtcos2t))/(cos 2t)`

`= (3 cos 2t sin^2 t cos t + sin^3 t sin 2t)/ ((cos 2t)3//2)`

`dy/dt = (sqrt cos 2t  d/dt  cos^3  t - cos^3 t  d/dt  sqrtcos2t)/(cos 2t)`

`= (sqrtcos2t.3 cos^2 t (- sint) - cos^3 t. 1/(2sqrtcos 2t).(-sin 2t).2)/(cos 2t)`

`= (-3 cos^2 t. sin t. sqrt cos2t + (cos^3 t sin 2t)/(sqrtcos2t))/(cos2t)`

`= (cos^3 t sin 2t - 3 cos^2 t. sin t cos 2t)/((cos2t)3//2)`

`dy/dx = (dy/dt)/(dx/dt) = (cos^3 t sin 2t - 3 cos^2 t . sin t cos 2t)/(3 cos2t sin^2 t cos t + sin^3 t sin 2t)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.6 [Page 181]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.6 | Q 7 | Page 181

RELATED QUESTIONS

find dy/dx if x=e2t , y=`e^sqrtt`


If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx  at " "θ =pi/4`  is ________


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)` 3/2`

(B) `sqrt3/2`

(C) `1/2`

(D) `-sqrt3/2`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a sec θ, y = b tan θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If `x = acos^3t`, `y = asin^3 t`,

Show that `(dy)/(dx) =- (y/x)^(1/3)`


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`


If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`

Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


Evaluate : `int  (sec^2 x)/(tan^2 x + 4)` dx


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`


If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


Derivative of x2 w.r.t. x3 is ______.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×