English

If Y = E Sin − 1 X and Z = E − Cos − 1 X , Prove that D Y D Z = E X / 2 - Mathematics

Advertisements
Advertisements

Question

IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`

Sum

Solution

`y =e ^(sin-1x) and (z=e^(-cos-1x))`

`y/z = e^(sin-1x)/(e^(-cos-1x)) = e^(cos^-1 x+sin^-1x)`

`y/z = e^(pi/2)`
`y=e^(pi/2)z`

`dy/dz =e^(pi/2)dz/dz`

`dy/dz=e^(pi/2)(1)`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) Set 1

RELATED QUESTIONS

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


find dy/dx if x=e2t , y=`e^sqrtt`


If x=at2, y= 2at , then find dy/dx.


If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`


If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx  at " "θ =pi/4`  is ________


If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`


If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of  `dy/dx `at t = `pi/4`


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)` 3/2`

(B) `sqrt3/2`

(C) `1/2`

(D) `-sqrt3/2`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = 4t, y = 4/y`


If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.

x = cos θ – cos 2θ, y = sin θ – sin 2θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0


Derivative of x2 w.r.t. x3 is ______.


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×