English

If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that dy/dx=β/αtan t - Mathematics

Advertisements
Advertisements

Question

If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`

Solution

`x=α sin 2t(1+cos 2t)`

`⇒x=α sin 2t+α/2×2 sin 2tcos 2t`

`⇒x=α sin 2t+α/2 sin 4t`

Differentiating both sides w.r.t. t, we get

`dx/dt=α cos2t xx 2+α/2 cos4txx4`

`⇒dx/dt=2α(cos2t+cos4t)`

`⇒dx/dt=2α(cos2t+2cos^2 2t−1)`

`⇒dx/dt=2α(cos2t+1)(2cos2t−1)`

Now,

`y=β cos2t(1−cos2t)`

`⇒y=β cos2t−β cos^2 2t`

Differentiating both sides w.r.t. t, we get 

`dy/dt=−β sin2t xx 2+β xx 2cos2t xx sin2txx2`

`⇒dy/dt=−2β sin2t+4β cos2t.sin2t`

`⇒dy/dt=2β sin2t(2cos2t−1)`



We know

`dy/dx=(dy/dt)/(dx/dt)`

`=(2α(cos2t+1)(2cos2t−1))/(dy/dt=2β sin2t(2cos2t−1))`

`=(βsin2t)/(α(cos2t+1))`

`=(βxx2sintcost)/(αxx2cos^2t)`

`=β/αtant`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Patna Set 2

RELATED QUESTIONS

find dy/dx if x=e2t , y=`e^sqrtt`


If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`


If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx  at " "θ =pi/4`  is ________


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`


If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)` 3/2`

(B) `sqrt3/2`

(C) `1/2`

(D) `-sqrt3/2`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = 4t, y = 4/y`


If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.

x = cos θ – cos 2θ, y = sin θ – sin 2θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a sec θ, y = b tan θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`

Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`


If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×