English

If x = ecos2t and y = esin2t, prove that dydxdydx=-ylogxxlogy - Mathematics

Advertisements
Advertisements

Question

If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`

Sum

Solution

Given that: ecos2t and y = esin2t

⇒ cos 2t = log x and sin 2t = log y.

Differentiating both the parametric functions w.r.t. t

`"dx"/"dt" = "e"^(cos2"t") * "d"/"dt" (cos 2"t")`

= `"e"^(cos 2"t") (- sin 2"t") * "d"/"dt" (2"t")`

= `- "e"^(cos2"t") * sin 2"t" * 2`

= `2"e"^(cos2"t") * sin 2"t"`

Now y = esin2t

`"dy"/"dt" = "e"^(sin2"t") * "d"/"dt"(sin 2"t")`

= `"e"^(sin2"t") * cos 2"t" * "d"/"dt"(2"t")`

= `"e"^(sin2"t") * cos 2"t" * 2`

= `2"e"^(sin2"t") * cos 2"t"`

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `(2"e"^(sin2"t") * cos2"t")/(-2"e"^(cos2"t") * sin 2"t")`

= `("e"^(sin2"t") * cos2"t")/(-"e"^(cos2"t") * sin2"t")`

= `(y cos 2"t")/(-x sin 2"t")`

= `(y log x)/(-x log y)`   ......`[(because cos 2"t" = log x),(sin 2"t" = log y)]`

Hence, `"dy"/"dx" = - (y log x)/(x log y)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 110]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 49 | Page 110

RELATED QUESTIONS

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


find dy/dx if x=e2t , y=`e^sqrtt`


If x=at2, y= 2at , then find dy/dx.


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)` 3/2`

(B) `sqrt3/2`

(C) `1/2`

(D) `-sqrt3/2`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = (sin^3t)/sqrt(cos 2t),  y  = (cos^3t)/sqrt(cos 2t)`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If `x = acos^3t`, `y = asin^3 t`,

Show that `(dy)/(dx) =- (y/x)^(1/3)`


If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`

Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


Evaluate : `int  (sec^2 x)/(tan^2 x + 4)` dx


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


Derivative of x2 w.r.t. x3 is ______.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×