Advertisements
Advertisements
प्रश्न
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
उत्तर
Given that: ecos2t and y = esin2t
⇒ cos 2t = log x and sin 2t = log y.
Differentiating both the parametric functions w.r.t. t
`"dx"/"dt" = "e"^(cos2"t") * "d"/"dt" (cos 2"t")`
= `"e"^(cos 2"t") (- sin 2"t") * "d"/"dt" (2"t")`
= `- "e"^(cos2"t") * sin 2"t" * 2`
= `2"e"^(cos2"t") * sin 2"t"`
Now y = esin2t
`"dy"/"dt" = "e"^(sin2"t") * "d"/"dt"(sin 2"t")`
= `"e"^(sin2"t") * cos 2"t" * "d"/"dt"(2"t")`
= `"e"^(sin2"t") * cos 2"t" * 2`
= `2"e"^(sin2"t") * cos 2"t"`
∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`
= `(2"e"^(sin2"t") * cos2"t")/(-2"e"^(cos2"t") * sin 2"t")`
= `("e"^(sin2"t") * cos2"t")/(-"e"^(cos2"t") * sin2"t")`
= `(y cos 2"t")/(-x sin 2"t")`
= `(y log x)/(-x log y)` ......`[(because cos 2"t" = log x),(sin 2"t" = log y)]`
Hence, `"dy"/"dx" = - (y log x)/(x log y)`.
APPEARS IN
संबंधित प्रश्न
If `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that" dy/dx = [-99x^2]/[101y^2]`
If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`
If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (θ – sin θ), y = a (1 + cos θ)
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
If X = f(t) and Y = g(t) Are Differentiable Functions of t , then prove that y is a differentiable function of x and
`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`
Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
Differentiate `x/sinx` w.r.t. sin x
If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0
Derivative of x2 w.r.t. x3 is ______.
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.