हिंदी

If x = ecos2t and y = esin2t, prove that dydxdydx=-ylogxxlogy - Mathematics

Advertisements
Advertisements

प्रश्न

If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`

योग

उत्तर

Given that: ecos2t and y = esin2t

⇒ cos 2t = log x and sin 2t = log y.

Differentiating both the parametric functions w.r.t. t

`"dx"/"dt" = "e"^(cos2"t") * "d"/"dt" (cos 2"t")`

= `"e"^(cos 2"t") (- sin 2"t") * "d"/"dt" (2"t")`

= `- "e"^(cos2"t") * sin 2"t" * 2`

= `2"e"^(cos2"t") * sin 2"t"`

Now y = esin2t

`"dy"/"dt" = "e"^(sin2"t") * "d"/"dt"(sin 2"t")`

= `"e"^(sin2"t") * cos 2"t" * "d"/"dt"(2"t")`

= `"e"^(sin2"t") * cos 2"t" * 2`

= `2"e"^(sin2"t") * cos 2"t"`

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `(2"e"^(sin2"t") * cos2"t")/(-2"e"^(cos2"t") * sin 2"t")`

= `("e"^(sin2"t") * cos2"t")/(-"e"^(cos2"t") * sin2"t")`

= `(y cos 2"t")/(-x sin 2"t")`

= `(y log x)/(-x log y)`   ......`[(because cos 2"t" = log x),(sin 2"t" = log y)]`

Hence, `"dy"/"dx" = - (y log x)/(x log y)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 49 | पृष्ठ ११०

संबंधित प्रश्न

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`


If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of  `dy/dx `at t = `pi/4`


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)` 3/2`

(B) `sqrt3/2`

(C) `1/2`

(D) `-sqrt3/2`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`

Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


Evaluate : `int  (sec^2 x)/(tan^2 x + 4)` dx


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


Differentiate `x/sinx` w.r.t. sin x


If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0


Derivative of x2 w.r.t. x3 is ______.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×