Advertisements
Advertisements
प्रश्न
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
उत्तर
Given that sin x = `(2"t")/(1 + "t"^2)` and tan y = `(2"t")/(1 - "t"^2)`
∴ Taking sin x = `(2"t")/(1 + "t"^2)`
Differentiating both sides w.r.t t, we get
`cosx* "dx"/"dt" = ((1 + "t"^2) * "d"/"dt" (2"t") - 2"t" * "d"/"dt" (1 + "t"^2))/(1 + "t"^2)^2`
⇒ `cosx * "dx"/"dt" = (2(1 + "t"^2) - 2"t" * 2"t")/(1 + "t"^2)^2`
⇒ `"dx"/"dt" = (2 + 2"t"^2 - 4"t"^2)/(1 - "t"^2)^2 xx 1/cosx`
⇒ `"dx"/"dt" = (2 - 2"t"^2)/(1 + "t"^2)^2 xx 1/sqrt(1 - sin^2x)`
⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt(1 - ((2"t")/(1 + "t"^2))^2`
⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/(sqrt((1 + "t"^2)^2 - 4"t"^2)/(1 + "t"^2)^2)`
⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx (1 + "t"^2)/sqrt(1 + "t"^4 + 2"t"^2 - 4"t"^2)`
⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt(1 + "t"^4 - 2"t"^2)`
⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt((1 - "t"^2)^2`
⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/((1 - "t"^2))`
⇒ `"dx"/"dt" = 2/(1 + "t"^2)`
Now taking, tan y = `2/(1 - "t"^2)`
Differentiating both sides w.r.t, t, we get
`"d"/"dt" (tan y) = "d"/"dt" ((2"t")/(1 - "t"^2))`
⇒ `sec^2y "dy"/"dt" = ((1 - "t"^2) * "d"/"dt" (2"t") - 2"t" * "d"/"dt" (1 - "t"^2))/((1 - "t"^2)^2`
⇒ `sec^2y "dy"/"dt" = ((1 - "t"^2) * 2 - 2"
t" * (-2"t"))/(1 - "t"^2)^2`
⇒ `sec^2y "dy"/"dt" = (2 - 2"t"^2 + 4"t"^2)/(1 - "t"^2)^2`
⇒ `"dy"/"dt" = (2 + 2"t"^2)/(1 - "t"^2)^2 xx 1/sec^2y`
⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(1 + tan^2y)`
⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(1 + ((2"t")/(1 - "t"^2))^2`
⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(((1 - "t"^2)^2 + 4"t"^2)/(1 - "t"^2)^2)`
⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^2 + 2"t"^2 + 4"t"^2)`
⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^4 + 2"t"^2)`
⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^2)^2`
⇒ `"dy"/"dt" = 2/(1 + "t"^2)`
∴ `"dy"/"dt" = ("dy"/"dt")/("dx"/"dt")`
= `(2/(1 + "t"^2))/(2/(1 + "t"^2))`
= 1
Hence `"dy"/"dt"` = 1
APPEARS IN
संबंधित प्रश्न
If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and hence, find dy/dx if x=a cost, y=a sint
If x=at2, y= 2at , then find dy/dx.
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a sec θ, y = b tan θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = acos^3t`, `y = asin^3 t`,
Show that `(dy)/(dx) =- (y/x)^(1/3)`
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`
The cost C of producing x articles is given as C = x3-16x2 + 47x. For what values of x, with the average cost is decreasing'?
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
Derivative of x2 w.r.t. x3 is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.