हिंदी

X = tt1+logtt2, y = tt3+2logtt - Mathematics

Advertisements
Advertisements

प्रश्न

x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`

योग

उत्तर

Given that: x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`

Differentiating both the parametric functions w.r.t. t

`"dx"/"dt" = ("t"^2 * "d"/"dt" (1 + log "t") - (1 + log "t") * "d"/"dt" ("t"^2))/"t"^4`

= `("t"^2 * (1/"t") - (1 + log "t") * 2"t")/"t"^4`

= `("t" - (1 + log "t") * 2"t")/"t"^4`

= `("t"[1 - 2 - 2 log "t"])/"t"^4`

= `(-(1 + 2 log "t"))/"t"^3`

y = `(3 + 2 log "t")/"t"`

`"dy"/"dt" = ("t" * "d"/"dt" (3 + 2 log "t") - (3 + 2 log "t") * "d"/"dt" ("t"))/"t"^2`

= `("t"(2/"t") - (3 + 2 log "t")* 1)/"t"^2`

= `(2 - 3 - 2 log "t")/"t"^2`

= `(-(1 + 2 log "t"))/"t"^2`

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `((-(1 + 2 log "t"))/"t"^2)/((-(1 + 2 log "t"))/"t"^3)`

= `"t"^3/"t"^2`

= t

Hence, `"dy"/"dx"` = t.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 48 | पृष्ठ ११०

संबंधित प्रश्न

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


find dy/dx if x=e2t , y=`e^sqrtt`


If x=at2, y= 2at , then find dy/dx.


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of  `dy/dx `at t = `pi/4`


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`


If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×