हिंदी

If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π. - Mathematics

Advertisements
Advertisements

प्रश्न

If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.

उत्तर

x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t)

We need to find dy/dx :

`dy/dx=(dy/dt)/(dx/dt)`

Let us find dx/dt:

x = cos t (3 – 2 cos2 t)

`dx/dt=cost(4costsint)+(3-2cos^2t)(-sint)`

`=>dx/dt=-3sint+4cos^2tsint+2cos^2tsint`

Let us find dy/dx:

y = sin t (3 – 2 sin2 t)

`dy/dt=sint(-4sintcost)+(3-2sin^2t)(cost)`

`=>dy/dt=3cost-4sin^2tcost-2sin^2tcost`

thus,

`dy/dx=(3cost-4sin^2tcost-2sin^2tcost)/(-3sint+4cos^2tsint+2cos^2tsint)`

`=>dy/dx=(3cost-6sin^2tcost)/(-3sint+6cos^2tsint)`

`=>dy/dx=(3cost(1-2sin^2t))/(-3sint(1-2cos^2t))`

`=>dy/dx=(3cost(1-2sin^2t))/(3sint(2cos^2t-1))`

`=>dy/dx=cost/sint [because 2cos^2t-1=1-2sin^2t]`

`=>dy/dx=cott`

`=>(dy/dx)_(t=pi/4)=cot(pi/4)=1`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) All India Set 3

संबंधित प्रश्न

If x=at2, y= 2at , then find dy/dx.


If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx  at " "θ =pi/4`  is ________


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of  `dy/dx `at t = `pi/4`


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


Evaluate : `int  (sec^2 x)/(tan^2 x + 4)` dx


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


Differentiate `x/sinx` w.r.t. sin x


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×