Advertisements
Advertisements
प्रश्न
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
उत्तर
x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t)
We need to find dy/dx :
`dy/dx=(dy/dt)/(dx/dt)`
Let us find dx/dt:
x = cos t (3 – 2 cos2 t)
`dx/dt=cost(4costsint)+(3-2cos^2t)(-sint)`
`=>dx/dt=-3sint+4cos^2tsint+2cos^2tsint`
Let us find dy/dx:
y = sin t (3 – 2 sin2 t)
`dy/dt=sint(-4sintcost)+(3-2sin^2t)(cost)`
`=>dy/dt=3cost-4sin^2tcost-2sin^2tcost`
thus,
`dy/dx=(3cost-4sin^2tcost-2sin^2tcost)/(-3sint+4cos^2tsint+2cos^2tsint)`
`=>dy/dx=(3cost-6sin^2tcost)/(-3sint+6cos^2tsint)`
`=>dy/dx=(3cost(1-2sin^2t))/(-3sint(1-2cos^2t))`
`=>dy/dx=(3cost(1-2sin^2t))/(3sint(2cos^2t-1))`
`=>dy/dx=cost/sint [because 2cos^2t-1=1-2sin^2t]`
`=>dy/dx=cott`
`=>(dy/dx)_(t=pi/4)=cot(pi/4)=1`
APPEARS IN
संबंधित प्रश्न
If x=at2, y= 2at , then find dy/dx.
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (θ – sin θ), y = a (1 + cos θ)
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`
The cost C of producing x articles is given as C = x3-16x2 + 47x. For what values of x, with the average cost is decreasing'?
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
Differentiate `x/sinx` w.r.t. sin x
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.