मराठी

If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π. - Mathematics

Advertisements
Advertisements

प्रश्न

If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.

उत्तर

x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t)

We need to find dy/dx :

`dy/dx=(dy/dt)/(dx/dt)`

Let us find dx/dt:

x = cos t (3 – 2 cos2 t)

`dx/dt=cost(4costsint)+(3-2cos^2t)(-sint)`

`=>dx/dt=-3sint+4cos^2tsint+2cos^2tsint`

Let us find dy/dx:

y = sin t (3 – 2 sin2 t)

`dy/dt=sint(-4sintcost)+(3-2sin^2t)(cost)`

`=>dy/dt=3cost-4sin^2tcost-2sin^2tcost`

thus,

`dy/dx=(3cost-4sin^2tcost-2sin^2tcost)/(-3sint+4cos^2tsint+2cos^2tsint)`

`=>dy/dx=(3cost-6sin^2tcost)/(-3sint+6cos^2tsint)`

`=>dy/dx=(3cost(1-2sin^2t))/(-3sint(1-2cos^2t))`

`=>dy/dx=(3cost(1-2sin^2t))/(3sint(2cos^2t-1))`

`=>dy/dx=cost/sint [because 2cos^2t-1=1-2sin^2t]`

`=>dy/dx=cott`

`=>(dy/dx)_(t=pi/4)=cot(pi/4)=1`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) All India Set 3

संबंधित प्रश्‍न

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = 4t, y = 4/y`


If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.

x = cos θ – cos 2θ, y = sin θ – sin 2θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = (sin^3t)/sqrt(cos 2t),  y  = (cos^3t)/sqrt(cos 2t)`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If `x = acos^3t`, `y = asin^3 t`,

Show that `(dy)/(dx) =- (y/x)^(1/3)`


If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`

Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


Evaluate : `int  (sec^2 x)/(tan^2 x + 4)` dx


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


Differentiate `x/sinx` w.r.t. sin x


Derivative of x2 w.r.t. x3 is ______.


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×