Advertisements
Advertisements
प्रश्न
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
उत्तर
Given that sin x = `(2"t")/(1 + "t"^2)` and tan y = `(2"t")/(1 - "t"^2)`
∴ Taking sin x = `(2"t")/(1 + "t"^2)`
Differentiating both sides w.r.t t, we get
`cosx* "dx"/"dt" = ((1 + "t"^2) * "d"/"dt" (2"t") - 2"t" * "d"/"dt" (1 + "t"^2))/(1 + "t"^2)^2`
⇒ `cosx * "dx"/"dt" = (2(1 + "t"^2) - 2"t" * 2"t")/(1 + "t"^2)^2`
⇒ `"dx"/"dt" = (2 + 2"t"^2 - 4"t"^2)/(1 - "t"^2)^2 xx 1/cosx`
⇒ `"dx"/"dt" = (2 - 2"t"^2)/(1 + "t"^2)^2 xx 1/sqrt(1 - sin^2x)`
⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt(1 - ((2"t")/(1 + "t"^2))^2`
⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/(sqrt((1 + "t"^2)^2 - 4"t"^2)/(1 + "t"^2)^2)`
⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx (1 + "t"^2)/sqrt(1 + "t"^4 + 2"t"^2 - 4"t"^2)`
⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt(1 + "t"^4 - 2"t"^2)`
⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt((1 - "t"^2)^2`
⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/((1 - "t"^2))`
⇒ `"dx"/"dt" = 2/(1 + "t"^2)`
Now taking, tan y = `2/(1 - "t"^2)`
Differentiating both sides w.r.t, t, we get
`"d"/"dt" (tan y) = "d"/"dt" ((2"t")/(1 - "t"^2))`
⇒ `sec^2y "dy"/"dt" = ((1 - "t"^2) * "d"/"dt" (2"t") - 2"t" * "d"/"dt" (1 - "t"^2))/((1 - "t"^2)^2`
⇒ `sec^2y "dy"/"dt" = ((1 - "t"^2) * 2 - 2"
t" * (-2"t"))/(1 - "t"^2)^2`
⇒ `sec^2y "dy"/"dt" = (2 - 2"t"^2 + 4"t"^2)/(1 - "t"^2)^2`
⇒ `"dy"/"dt" = (2 + 2"t"^2)/(1 - "t"^2)^2 xx 1/sec^2y`
⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(1 + tan^2y)`
⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(1 + ((2"t")/(1 - "t"^2))^2`
⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(((1 - "t"^2)^2 + 4"t"^2)/(1 - "t"^2)^2)`
⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^2 + 2"t"^2 + 4"t"^2)`
⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^4 + 2"t"^2)`
⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^2)^2`
⇒ `"dy"/"dt" = 2/(1 + "t"^2)`
∴ `"dy"/"dt" = ("dy"/"dt")/("dx"/"dt")`
= `(2/(1 + "t"^2))/(2/(1 + "t"^2))`
= 1
Hence `"dy"/"dt"` = 1
APPEARS IN
संबंधित प्रश्न
If x=at2, y= 2at , then find dy/dx.
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (θ – sin θ), y = a (1 + cos θ)
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a sec θ, y = b tan θ
If X = f(t) and Y = g(t) Are Differentiable Functions of t , then prove that y is a differentiable function of x and
`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`
Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.
IF `y = e^(sin-1x) and z =e^(-cos-1x),` prove that `dy/dz = e^x//2`
The cost C of producing x articles is given as C = x3-16x2 + 47x. For what values of x, with the average cost is decreasing'?
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals