Advertisements
Advertisements
प्रश्न
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
उत्तर
Given that: ecos2t and y = esin2t
⇒ cos 2t = log x and sin 2t = log y.
Differentiating both the parametric functions w.r.t. t
`"dx"/"dt" = "e"^(cos2"t") * "d"/"dt" (cos 2"t")`
= `"e"^(cos 2"t") (- sin 2"t") * "d"/"dt" (2"t")`
= `- "e"^(cos2"t") * sin 2"t" * 2`
= `2"e"^(cos2"t") * sin 2"t"`
Now y = esin2t
`"dy"/"dt" = "e"^(sin2"t") * "d"/"dt"(sin 2"t")`
= `"e"^(sin2"t") * cos 2"t" * "d"/"dt"(2"t")`
= `"e"^(sin2"t") * cos 2"t" * 2`
= `2"e"^(sin2"t") * cos 2"t"`
∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`
= `(2"e"^(sin2"t") * cos2"t")/(-2"e"^(cos2"t") * sin 2"t")`
= `("e"^(sin2"t") * cos2"t")/(-"e"^(cos2"t") * sin2"t")`
= `(y cos 2"t")/(-x sin 2"t")`
= `(y log x)/(-x log y)` ......`[(because cos 2"t" = log x),(sin 2"t" = log y)]`
Hence, `"dy"/"dx" = - (y log x)/(x log y)`.
APPEARS IN
संबंधित प्रश्न
find dy/dx if x=e2t , y=`e^sqrtt`
If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that `dy/dx=β/αtan t`
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (θ – sin θ), y = a (1 + cos θ)
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = acos^3t`, `y = asin^3 t`,
Show that `(dy)/(dx) =- (y/x)^(1/3)`
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`
If X = f(t) and Y = g(t) Are Differentiable Functions of t , then prove that y is a differentiable function of x and
`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`
Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.
The cost C of producing x articles is given as C = x3-16x2 + 47x. For what values of x, with the average cost is decreasing'?
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
Differentiate `x/sinx` w.r.t. sin x
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.