मराठी

If x = t2, y = t3, then dydxd2ydx2 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.

पर्याय

  • `3/2`

  • `3/(4"t")`

  • `3/(2"t")`

  • `3/4`

MCQ
रिकाम्या जागा भरा

उत्तर

If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is `3/(4"t")`.

Explanation:

Given that x = t2 and y = t3 

Differentiating both the parametric functions w.r.t. t

`"dx"/"dt"` = 2t and  `"dy"/"dt"` = 3t2

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `(3"t"^2)/(2"t")`

= `3/2 "t"`

⇒ `"dy"/"dx" = 3/2 "t"`

Now differentiating again w.r.t. x

`"d"/"dx"("dy"/"dx") = 3/2 * "dt"/"dx"`

⇒ `("d"^2"y")/("dx"^2) = 3/2 * 1/(2"t")`

= `3/(4"t")`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity And Differentiability - Exercise [पृष्ठ ११५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 5 Continuity And Differentiability
Exercise | Q 94 | पृष्ठ ११५

संबंधित प्रश्‍न

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


find dy/dx if x=e2t , y=`e^sqrtt`


If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`


If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a sec θ, y = b tan θ


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`


Differentiate `x/sinx` w.r.t. sin x


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0


Derivative of x2 w.r.t. x3 is ______.


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×