Advertisements
Advertisements
प्रश्न
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
पर्याय
`3/2`
`3/(4"t")`
`3/(2"t")`
`3/4`
उत्तर
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is `3/(4"t")`.
Explanation:
Given that x = t2 and y = t3
Differentiating both the parametric functions w.r.t. t
`"dx"/"dt"` = 2t and `"dy"/"dt"` = 3t2
∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`
= `(3"t"^2)/(2"t")`
= `3/2 "t"`
⇒ `"dy"/"dx" = 3/2 "t"`
Now differentiating again w.r.t. x
`"d"/"dx"("dy"/"dx") = 3/2 * "dt"/"dx"`
⇒ `("d"^2"y")/("dx"^2) = 3/2 * 1/(2"t")`
= `3/(4"t")`.
APPEARS IN
संबंधित प्रश्न
If `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that" dy/dx = [-99x^2]/[101y^2]`
find dy/dx if x=e2t , y=`e^sqrtt`
If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and hence, find dy/dx if x=a cost, y=a sint
If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`
If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that `dy/dx=β/αtan t`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (θ – sin θ), y = a (1 + cos θ)
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a sec θ, y = b tan θ
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`
IF `y = e^(sin-1x) and z =e^(-cos-1x),` prove that `dy/dz = e^x//2`
The cost C of producing x articles is given as C = x3-16x2 + 47x. For what values of x, with the average cost is decreasing'?
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`
Differentiate `x/sinx` w.r.t. sin x
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0
Derivative of x2 w.r.t. x3 is ______.
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.