Advertisements
Advertisements
प्रश्न
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.
पर्याय
2
`(-1)/(2sqrt(1 - x^2)`
`2/x`
1 – x2
उत्तर
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is 2.
Explanation:
Let y = cos–1(2x2 – 1) and t = cos–1x
Differentiating both the functions w.r.t. x
`"dy"/"dx" = "d"/"dx" cos^-1 (2x^2 - 1)` and `"dt"/"dx" = "d"/"dx" cos^-1x`
⇒ `"dy"/"dx" = (-1)/sqrt(1 - (2x^2 - 1)^2) * "d"/"dx" (2x^2 - 1)` and `"dt"/"dx" = (-1)/sqrt(1 - x^2)`
= `(-1.4x)/sqrt(1 - (4x^4 + 1 - 4x^2)` and `"dt"/"dx" = (-1)/sqrt(1 - x^2)`
= `(-4x)/sqrt(1 - 4x^4 - 1 + 4x^2)`
= `(-4x)/sqrt(4x^2 - 4x^4)`
= `(-4x)/(2xsqrt(1 - x^2)`
⇒ `"dy"/"dx" = (-2)/sqrt(1 - x^2)`
Now `"dy"/"dx" = ("dy"/"dx")/("dt"/"dx")`
= `((-2)/sqrt(1 - x^2))/((-1)/sqrt(1 - x^2))`
= 2.
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
log (log x)
Find the second order derivative of the function.
sin (log x)
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
`sin xy + x/y` = x2 – y
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`