Advertisements
Advertisements
प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
उत्तर
`y = a (cost+logtan(t/2)) and x=asint`
`therefore dy/dt=a[d/dt(cost)+d/dt(log tan (t/2))]=a[-sint+cot(t/2)xxsec^2(t/2)xxt/2]=a[-sint+1/(2sin(t/2)cos(t/2))]`
`dy/dt=a(-sint+1/sint)=a((-sin^2t+1)/sint)=a cos^2t/sint`
`dx/dt=a d/dt(sint)=acost`
`therefore dy/dx=(dy/dt)/(dx/dt)=(a (cos^2t/sint))/acost=cost/sint=cott`
`(d^2y)/(dx^2)=d(cott)/dx=-cosec^2tdt/dx=-cosec^2txx1/(acost)=1/(asin^2tcost)`
APPEARS IN
संबंधित प्रश्न
Find the second order derivative of the function.
x2 + 3x + 2
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
log (log x)
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = log (x).
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
sec(x + y) = xy
tan–1(x2 + y2) = a
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
Derivative of cot x° with respect to x is ____________.
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`