मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find d2ydx2, if y = ex - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`

बेरीज

उत्तर

y = `"e"^"x"`

Differentiating both sides w.r.t.x, we get

`"dy"/"dx" = "e"^"x"`

Again, differentiating both sides w.r.t. x , we get

`("d"^2"y")/"dx"^2 = "e"^"x"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - EXERCISE 3.6 [पृष्ठ ९८]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`


Find the second order derivative of the function.

`x^20`


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

log x


Find the second order derivative of the function.

e6x cos 3x


Find the second order derivative of the function.

tan–1 x


Find the second order derivative of the function.

log (log x)


If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2


Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`


`sin xy + x/y` = x2 – y


tan–1(x2 + y2) = a


If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1 


If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:


If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.


`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2 if, y = e^((2x + 1))`


Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


Find `(d^2y)/dx^2  "if,"  y= e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^(2x +1)`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×