Advertisements
Advertisements
प्रश्न
Find the second order derivative of the function.
e6x cos 3x
उत्तर
Let, y = e6x cos 3x
Differentiating both sides with respect to x,
`dy/dx = e^(6x) d/dx cos 3 x + cos 3 x d/dx e^(6x)`
`= e^(6x) (- sin 3 x) d/dx (3x) + cos 3 x * e^(6x) d/dx (6x)`
`= - 3 e^(6x) sin 3 x + 6 e^(6x) cos 3 x`
`= e^(6x) (6 cos 3 x - 3 sin 3 x)`
Differentiating both sides again with respect to x,
`(d^2 y)/dx^2 = e^(6x) d/dx (6 cos 3 x - 3 sin 3 x) + (6 cos 3 x - 3 sin 3 x) d/dx e^(6x)`
`= e^(6x) [6 (- sin 3x) d/dx (3x) - 3 cos 3x d/dx (3x)] + [6 cos 3x - 3 sin 3x]e^(6x) d/dx (6x)`
`= e^(6x) [-6 sin 3x * 3 - 3 cos 3x . 3] + [6 cos 3x - 3 sin 3x] xx e^(6x) * 6`
`= e^(6x) [- 18 sin 3x - 9 cos 3 x] + e^(6x) [36 cos 3x - 18 sin 3x]`
`= e^(6x) [- 36 sin 3x + 27 cos 3x]`
`= 9 e^(6x) [3 cos 3x - 4 sin 3x]`
APPEARS IN
संबंधित प्रश्न
Find the second order derivative of the function.
x2 + 3x + 2
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
x3 log x
Find the second order derivative of the function.
tan–1 x
Find the second order derivative of the function.
log (log x)
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
sec(x + y) = xy
(x2 + y2)2 = xy
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
Read the following passage and answer the questions given below:
The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3. |
- Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
- Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`