Advertisements
Advertisements
प्रश्न
(x2 + y2)2 = xy
उत्तर
Given that: (x2 + y2)2 = xy
⇒ x4 + y4 + 2x2y2 = xy
Differentiating both sides w.r.t. x
`"d"/"dx"(x^4) + "d"/"dx"(y^4) + 2*"d"/"dx"(x^2y^2) = "d"/"dx"(xy)`
⇒ `4x^3 + 4y^3 * "dy"/"dx" + 2[x^2*2y*"dy"/"dx" + y^2*2x] = x"dy"/"dx" + y*1`
⇒ `4x^3 + 4y^3 * "dy"/"dx" + 4x^2y * "dy"/"dx" + 4xy^2 = x "dy"/"dx" + y`
⇒ `4y^3 "dy"/"dx" + 4x^2y "dy"/"dx" - x "dy"/"dx" = y - 4x^3 - 4xy^2`
⇒ `(4y^3 + 4x^2y - x)"dy"/"dx" = y - 4x^3 - 4xy^2`
⇒ `"dy"/"dx" = (y - 4x^3 - 4xy^2)/(4y^3 + 4x^2y - x)`
Hence, `"dy"/"dx" = (y - 4x^3 - 4xy^2)/(4x^2y + 4x^2y - x)`.
APPEARS IN
संबंधित प्रश्न
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
x3 log x
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
sec(x + y) = xy
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
Derivative of cot x° with respect to x is ____________.
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
Read the following passage and answer the questions given below:
The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3. |
- Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
- Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`