English

(x2 + y2)2 = xy - Mathematics

Advertisements
Advertisements

Question

(x2 + y2)2 = xy

Sum

Solution

Given that: (x2 + y2)2 = xy

⇒ x4 + y4 + 2x2y2 = xy

Differentiating both sides w.r.t. x

`"d"/"dx"(x^4) + "d"/"dx"(y^4) + 2*"d"/"dx"(x^2y^2) = "d"/"dx"(xy)`

⇒ `4x^3 + 4y^3 * "dy"/"dx" + 2[x^2*2y*"dy"/"dx" + y^2*2x] = x"dy"/"dx" + y*1`

⇒ `4x^3 + 4y^3 * "dy"/"dx" + 4x^2y * "dy"/"dx" + 4xy^2 = x "dy"/"dx" + y`

⇒ `4y^3 "dy"/"dx" + 4x^2y "dy"/"dx" - x "dy"/"dx" = y - 4x^3 - 4xy^2`

⇒ `(4y^3 + 4x^2y - x)"dy"/"dx" = y - 4x^3 - 4xy^2`

⇒ `"dy"/"dx" = (y - 4x^3 - 4xy^2)/(4y^3 + 4x^2y - x)`

Hence, `"dy"/"dx" =  (y - 4x^3 - 4xy^2)/(4x^2y + 4x^2y - x)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 111]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 57 | Page 111

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`


If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

log x


Find the second order derivative of the function.

x3 log x


Find the second order derivative of the function.

log (log x)


If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


`sin xy + x/y` = x2 – y


If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1 


If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.


If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.


`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×