Advertisements
Advertisements
Question
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
Solution
Given that
x cos(a+y)=cosy...1
`=>x=(cosy)/cos(a+y)`
Differentiating both sides of the equation (1), we have,
`x xx(-sin(a+y))(dy)/(dx)+1xxcos(a+y)=-siny(dy)/dx`
`=>[siny-xsin(a+y)](dy)/dx=-cos(a+y)`
`=>[siny-cosy/cos(a+y)sin(a+y)]dy/(dx)=-cos(a+y)`
`=>[(cos(a+y)xxsiny-cosysin(a+y))/cos(a+y)]dx/dy=-cos(a+y)`
`=>[sin(a+y-y)]dy/dx=-cos^2(a+y) `
`=>[sina]dy/dx=-cos^2(a+y)`
`=>dy/dx=((-cos^2(a+y))/sina) `
Differentiating once again with respect to x, we have,
`sina(d^2y)/dx^2=-2cos(a+y)sin(a+y)dy/dx`
`=>sina((d^2y)/dx^2)+2cos(a+y)sin(a+y)dy/dx=0`
`=>sina(d^2y)/dx^2+sin2(a+y)dy/dx=0`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
x3 log x
Find the second order derivative of the function.
log (log x)
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
`sin xy + x/y` = x2 – y
sec(x + y) = xy
tan–1(x2 + y2) = a
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`