English

If x sin (a + y) + sin a cos (a + y) = 0, prove that dydxaadydx=sin2(a+y)sina - Mathematics

Advertisements
Advertisements

Question

If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`

Sum

Solution

Given that: x sin (a + y) + sin a cos (a + y) = 0

⇒ x sin (a + y) = – sin a cos (a + y)

⇒ x = `(-sin"a" * cos("a" + y))/(sin ("a" + y))`

⇒ x = – sin a.cot (a + y)

Differentiating both sides w.r.t. y

⇒ `"dx"/"dy" = - sin"a"*"d"/"dy" cot("a" + y)`

⇒ `"dx"/"dy" = -sin"a"[-"cosec"^2("a" + y)`

⇒ `"dx"/"dy" = sin"a"/(sin^2("a" + y))`

∴ `"dy"/"dx" = 1/("dx"/"dy")`

= `1/(sin"a"/(sin^2("a" + y))`

Hence, `"dy"/"dx" = (sin^2("a" + y))/sin"a"`.

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 111]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 62 | Page 111

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

x2 + 3x + 2


Find the second order derivative of the function.

log x


Find the second order derivative of the function.

x3 log x


Find the second order derivative of the function.

ex sin 5x


Find the second order derivative of the function.

e6x cos 3x


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`


sec(x + y) = xy


tan–1(x2 + y2) = a


(x2 + y2)2 = xy


If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1 


If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.


If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.


Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`


Find `(d^2y)/dx^2, "if"  y = e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×