Advertisements
Advertisements
Question
Find the second order derivative of the function.
x2 + 3x + 2
Solution
Let, y = x2 + 3x + 2
Differentiating both sides with respect to x,
`dy/dx = 2x + 3`
Differentiating both sides again with respect to x,
`d/dx (dy/dx) = (d^2 y)/dx^2`
`= d/dx (2x + 3)`
= 2
APPEARS IN
RELATED QUESTIONS
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x3 log x
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
tan–1 x
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
`sin xy + x/y` = x2 – y
sec(x + y) = xy
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
Read the following passage and answer the questions given below:
The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3. |
- Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
- Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`