Advertisements
Advertisements
Question
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
Options
x
– x
16x
– 16x
Solution
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to – 16x.
Explanation:
x = A cos 4t + B sin 4t
`dx/dt` = – A 4 sin 4t + 4B cos 4t
`(d^2x)/(dt^2)` = – 16A cos 4t – 16B sin 4t
= – 16[A cos 4t + B sin 4t]
= – 16x.
APPEARS IN
RELATED QUESTIONS
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
Find the second order derivative of the function.
x2 + 3x + 2
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
log (log x)
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
`sin xy + x/y` = x2 – y
Derivative of cot x° with respect to x is ____________.
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`