Advertisements
Advertisements
Question
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Solution
y = 3 cos (log x) + 4 sin (log x)
On differentiating both sides w.r.t. x, we get
`dy/dx = -3sin (log x) xx 1/x + 4 cos(log x) xx 1/x`
`x dy/dx = -3sin (log x) + 4 cos (log x)`
Again differentiating both sides w.r.t x, we get
`x (d^2y)/(dx^2) + (dy/dx) = -3 cos (log x) xx 1/x - 4 sin(log x) xx 1/x`
`\implies x^2 (d^2y)/(dx^2) + x(dy/dx) = -[3 cos (log x) + 4 sin (log x)]`
`\implies x^2 (d^2y)/(dx^2) + x(dy/dx) = -y`
`\implies x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Hence proved
APPEARS IN
RELATED QUESTIONS
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
tan–1 x
Find the second order derivative of the function.
log (log x)
Find the second order derivative of the function.
sin (log x)
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
`sin xy + x/y` = x2 – y
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
Read the following passage and answer the questions given below:
The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3. |
- Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
- Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`