मराठी

If y = 3 cos(log x) + 4 sin(log x), show that x2d2ydx2+xdydx+y=0 - Mathematics

Advertisements
Advertisements

प्रश्न

If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`

बेरीज

उत्तर

y = 3 cos (log x) + 4 sin (log x)

On differentiating both sides w.r.t. x, we get

`dy/dx = -3sin (log x) xx 1/x + 4 cos(log x) xx 1/x`

`x dy/dx = -3sin (log x) + 4 cos (log x)`

Again differentiating both sides w.r.t x, we get

`x (d^2y)/(dx^2) + (dy/dx) = -3 cos (log x) xx 1/x - 4 sin(log x) xx 1/x`

`\implies x^2 (d^2y)/(dx^2) + x(dy/dx) = -[3 cos (log x) + 4 sin (log x)]`

`\implies x^2 (d^2y)/(dx^2) + x(dy/dx) = -y`

`\implies x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`

Hence proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Official

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

x2 + 3x + 2


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

tan–1 x


Find the second order derivative of the function.

log (log x)


If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`


Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2


If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


`sin xy + x/y` = x2 – y


sec(x + y) = xy


tan–1(x2 + y2) = a


If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.


The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.


`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


Find `(d^2y)/dx^2  "if,"  y= e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^(2x +1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×