मराठी

If x = a cos t and y = b sin t, then find d2ydx2. - Mathematics

Advertisements
Advertisements

प्रश्न

If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.

बेरीज

उत्तर

If x = a cos t, y = b sin t

`dx/(dt)` = – a sin t

`dy/(dt)` = b cos t

`dy/dx = (dy/(dt))/(dx/(dt))`

= `(b cos t)/(-a sin t)`

= `(-b)/a cot t`

`(d^2y)/(dx^2) = b/a "cosec"^2t xx (dt)/dx`

= `b/a "cosec"^2t xx (-1)/(a sin t)`

= `-b/a^2 "cosec"^3t`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

log (log x)


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`


Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


tan–1(x2 + y2) = a


(x2 + y2)2 = xy


If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1 


If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.


The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.


If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


Find `(d^2y)/dx^2 if, y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×