मराठी

If y = tan x + sec x then prove that d2ydx2=cosx(1-sinx)2. - Mathematics

Advertisements
Advertisements

प्रश्न

If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.

बेरीज

उत्तर

y = tan x + sec x

`dy/dx = d/dx (tan x) + d/dx (sec x)`

= sec2 x + sec x tan x

= sec x (sec x + tan x)

= `1/cosx(1/cosx + sinx/cosx)`

= `(1 + sinx)/(cos^2x)`

`dy/dx = (1 + sinx)/(1 - sin^2x)`

= `1/(1 - sinx)`

`(d^2y)/(dx^2) = ((1 - sinx)0 - 1(-cosx))/(1 - sinx)^2`

= `cosx/(1 - sinx)^2`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

`x^20`


Find the second order derivative of the function.

e6x cos 3x


Find the second order derivative of the function.

tan–1 x


Find the second order derivative of the function.

log (log x)


Find the second order derivative of the function.

sin (log x)


If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`


If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2


Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`


tan–1(x2 + y2) = a


(x2 + y2)2 = xy


If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1 


If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.


The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.


If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:


Derivative of cot x° with respect to x is ____________.


If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.


If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.


If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.


`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


Find `(d^2y)/dx^2  "if,"  y= e^((2x+1))`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×