Advertisements
Advertisements
प्रश्न
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
उत्तर
y = 500e7x + 600e-7x
On differentiating with respect to x,
`dy/dx = d/dx (500 e^(7x) + 600 e^(- 7x))`
` = 500 d/dx e^(7x) + 600 d/dx e^(- 7x)`
`= 500 e^(7x) d/dx (7x) + 600 e^(- 7x) d/dx (-7x)`
= 500 e7x . 7 + 600 e-7x. (-7)
= 3500 e7x - 4200 e-7x
Differentiating again with respect to x,
`(d^2 y)/dx^2 = 3500 d/dx e^(7x) - 4200 d/dx e^(- 7x)`
`= 3500 xx e^( 7x) * 7 - 4200 e^(- 7x) (- 7)`
= 500 × 49 e7x + 600 × 49 e-7x
= 49(500 e7x + 600 e-7x)
= 49 y
∴ `(d^2y)/dx^2 = 49y.`
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
x3 log x
If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`
sec(x + y) = xy
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
Derivative of cot x° with respect to x is ____________.
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`