Advertisements
Advertisements
प्रश्न
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
उत्तर १
Given, y = Aemx + benx ...(1)
Differentiating both sides with respect to ,
`dy/dx = A d/dx e^(mx) + B d/dx e^(nx) `
`= A e^(mx) d/dx (mx) + B e^(nx) d/dx (nx)`
= A · memx + B · nenx ...(2)
Differentiating both sides again with respect to x,
`(d^2 y)/dx^2 = Am d/dx e^(mx) + Bn d/dx e^(nx)`
= Am2 emx + Bn2 enx ...(3)
left side `(d^2 y)/dx^2 - (m + n) dy/dx + mn y `
= Am2 emx + Bn2 enx - (m + n) x (Amemx + Bnenx) + mn (Aemx + Benx)
...[Substituting the value of y from equation (1), `dy/dx` from equation (2) and `(d^2 y)/dx^2` from equation (3)]
= Aemx [m2 - m(m + n) + mn] + Benx [n2 - n (m + n) + mn]
= Aemx [m2 - m2 - mn + mn] + Benx [n2 - mn - n2 + mn]
= Aemx x 0 + Benx x 0 = 0 = right side
उत्तर २
Let y = Aemx + Benx ....(1)
Differentiating (1) w.r.t x we get
`dy/dx = Ae^(mx). m+ Be^(nx).n = Ame^(mx) + Bn e^(nx)` ....(2)
Differentiating (2) w.r.t.x, we get,
`(d^2y)/dx^2 = Ame^(mx). m + Bn e^(nx).n`
`= Am^2e^(mx) + Bn^2e^(nx)`
Now,
`(d^2y)/dx^2 - (m + n) dy/dx + mny `
`= Am^2e^(mx) + Bn^2e^(nx) - [(m + n) Ame^(mx) + Bn e^(nx) ] + mn (Ae^(mx) + Be^(nx))` .....[from (1), (2) and (3)]
`= Am^2e^(mx) - Bn^2e^(nx) - Am^2e^(mx) - Bmn e^(nx) - Amn e^(mx) - Bn^2e^(nx) + Amn e^(mx) + Bmn e^(nx) = 0`
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
Find the second order derivative of the function.
x2 + 3x + 2
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
log (log x)
Find the second order derivative of the function.
sin (log x)
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`
If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
Derivative of cot x° with respect to x is ____________.
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`