English

If y = Aemx + Benx, show that d2ydx2 -(m+n)dydx+mny=0 - Mathematics

Advertisements
Advertisements

Question

If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`

Sum

Solution 1

Given, y = Aemx + benx   ...(1)

Differentiating both sides with respect to ,

`dy/dx = A  d/dx  e^(mx) + B  d/dx  e^(nx) `

`= A  e^(mx) d/dx  (mx) + B  e^(nx) d/dx  (nx)`

= A · memx + B · nenx     ...(2)

Differentiating both sides again with respect to x,

`(d^2 y)/dx^2 = Am  d/dx  e^(mx) + Bn  d/dx  e^(nx)`

= Am2 emx + Bn2 enx          ...(3)

left side `(d^2 y)/dx^2 - (m + n) dy/dx + mn y `

= Am2 emx + Bn2 enx - (m + n) x (Amemx + Bnenx) + mn (Aemx + Benx)

...[Substituting the value of y from equation (1), `dy/dx` from equation (2) and `(d^2 y)/dx^2` from equation (3)]

= Aemx [m2 - m(m + n) + mn] + Benx [n2 - n (m + n) + mn]

= Aemx [m2 - m2 - mn + mn] + Benx [n2 - mn - n2 + mn]

= Aemx x 0 + Benx x 0 = 0 = right side

shaalaa.com

Solution 2

Let y = Aemx +  Benx                ....(1)

Differentiating (1) w.r.t x we get

`dy/dx = Ae^(mx). m+ Be^(nx).n = Ame^(mx) + Bn e^(nx)`       ....(2)

Differentiating (2) w.r.t.x, we get,

`(d^2y)/dx^2 = Ame^(mx). m + Bn e^(nx).n`

`= Am^2e^(mx) + Bn^2e^(nx)`

Now,

`(d^2y)/dx^2 - (m + n) dy/dx + mny `

`= Am^2e^(mx) + Bn^2e^(nx) - [(m + n) Ame^(mx) + Bn e^(nx) ] + mn (Ae^(mx) + Be^(nx))`      .....[from (1), (2) and  (3)]

`= Am^2e^(mx) - Bn^2e^(nx) - Am^2e^(mx) - Bmn e^(nx) - Amn e^(mx) - Bn^2e^(nx) + Amn e^(mx) + Bmn e^(nx) = 0`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.7 [Page 184]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.7 | Q 14 | Page 184

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`


Find the second order derivative of the function.

`x^20`


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

e6x cos 3x


Find the second order derivative of the function.

tan–1 x


Find the second order derivative of the function.

log (log x)


Find the second order derivative of the function.

sin (log x)


If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


sec(x + y) = xy


(x2 + y2)2 = xy


If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1 


If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.


Find `(d^2y)/dx^2 if, y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


Find `(d^2y)/dx^2  "if,"  y= e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×