Advertisements
Advertisements
Question
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
Solution 1
Given, y = Aemx + benx ...(1)
Differentiating both sides with respect to ,
`dy/dx = A d/dx e^(mx) + B d/dx e^(nx) `
`= A e^(mx) d/dx (mx) + B e^(nx) d/dx (nx)`
= A · memx + B · nenx ...(2)
Differentiating both sides again with respect to x,
`(d^2 y)/dx^2 = Am d/dx e^(mx) + Bn d/dx e^(nx)`
= Am2 emx + Bn2 enx ...(3)
left side `(d^2 y)/dx^2 - (m + n) dy/dx + mn y `
= Am2 emx + Bn2 enx - (m + n) x (Amemx + Bnenx) + mn (Aemx + Benx)
...[Substituting the value of y from equation (1), `dy/dx` from equation (2) and `(d^2 y)/dx^2` from equation (3)]
= Aemx [m2 - m(m + n) + mn] + Benx [n2 - n (m + n) + mn]
= Aemx [m2 - m2 - mn + mn] + Benx [n2 - mn - n2 + mn]
= Aemx x 0 + Benx x 0 = 0 = right side
Solution 2
Let y = Aemx + Benx ....(1)
Differentiating (1) w.r.t x we get
`dy/dx = Ae^(mx). m+ Be^(nx).n = Ame^(mx) + Bn e^(nx)` ....(2)
Differentiating (2) w.r.t.x, we get,
`(d^2y)/dx^2 = Ame^(mx). m + Bn e^(nx).n`
`= Am^2e^(mx) + Bn^2e^(nx)`
Now,
`(d^2y)/dx^2 - (m + n) dy/dx + mny `
`= Am^2e^(mx) + Bn^2e^(nx) - [(m + n) Ame^(mx) + Bn e^(nx) ] + mn (Ae^(mx) + Be^(nx))` .....[from (1), (2) and (3)]
`= Am^2e^(mx) - Bn^2e^(nx) - Am^2e^(mx) - Bmn e^(nx) - Amn e^(mx) - Bn^2e^(nx) + Amn e^(mx) + Bmn e^(nx) = 0`
APPEARS IN
RELATED QUESTIONS
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
e6x cos 3x
Find the second order derivative of the function.
tan–1 x
Find the second order derivative of the function.
log (log x)
Find the second order derivative of the function.
sin (log x)
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
sec(x + y) = xy
(x2 + y2)2 = xy
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`