English

If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0 - Mathematics

Advertisements
Advertisements

Question

If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0

Sum

Solution

Given, y = 3 cos (log x) + 4 sin (log x)       ...(1)

Differentiating both sides with respect to x,

`dy/dx = 3  d/dx cos (log x) + 4 d/dx sin (log x)`

=` 3 [- sin (log x)] d/dx (log x) + 4 cos (log x) d/dx (log x)`

= `- 3 sin (log x) xx 1/x + 4 cos (log x) xx 1/x`

Multiplying both sides by x,

`x dy/dx = - 3 sin (log x) + 4 cos (log x)`

Differentiating both sides again with respect to x,

`x d/dx (dy/dx) + dy/dx * d/dx (x) = - 3 cos (log x) d/dx (log x) - 4 sin (log x) d/dx (log x)`

`x (d^2 y)/dx^2 + 1 * dy/dx = - 3 cos (log x) 1/x - 4 sin (log x) * 1/x`

Multiplying both sides by x,

`x^2 (d^2 y)/dx^2 + x dy/dx = - [3 cos (log x) + 4 sin (log x)] = - y `             ....From equation (1)

`=> x^2 (d^2 y)/dx^2 + x dy/dx + y = 0`

or, x2 y2 + xy1 + y = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.7 [Page 184]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.7 | Q 13 | Page 184

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

ex sin 5x


Find the second order derivative of the function.

e6x cos 3x


If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`


If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`


If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


`sin xy + x/y` = x2 – y


sec(x + y) = xy


If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.


If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.


`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2 if, y = e^((2x + 1))`


Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


Find `(d^2y)/dx^2  "if,"  y= e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^(2x +1)`


Find `(d^2y)/dx^2, "if"  y = e^((2x+1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×