Advertisements
Advertisements
Question
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
Solution
Given, y = 3 cos (log x) + 4 sin (log x) ...(1)
Differentiating both sides with respect to x,
`dy/dx = 3 d/dx cos (log x) + 4 d/dx sin (log x)`
=` 3 [- sin (log x)] d/dx (log x) + 4 cos (log x) d/dx (log x)`
= `- 3 sin (log x) xx 1/x + 4 cos (log x) xx 1/x`
Multiplying both sides by x,
`x dy/dx = - 3 sin (log x) + 4 cos (log x)`
Differentiating both sides again with respect to x,
`x d/dx (dy/dx) + dy/dx * d/dx (x) = - 3 cos (log x) d/dx (log x) - 4 sin (log x) d/dx (log x)`
`x (d^2 y)/dx^2 + 1 * dy/dx = - 3 cos (log x) 1/x - 4 sin (log x) * 1/x`
Multiplying both sides by x,
`x^2 (d^2 y)/dx^2 + x dy/dx = - [3 cos (log x) + 4 sin (log x)] = - y ` ....From equation (1)
`=> x^2 (d^2 y)/dx^2 + x dy/dx + y = 0`
or, x2 y2 + xy1 + y = 0
APPEARS IN
RELATED QUESTIONS
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
e6x cos 3x
If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
`sin xy + x/y` = x2 – y
sec(x + y) = xy
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`