हिंदी

If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0

योग

उत्तर

Given, y = 3 cos (log x) + 4 sin (log x)       ...(1)

Differentiating both sides with respect to x,

`dy/dx = 3  d/dx cos (log x) + 4 d/dx sin (log x)`

=` 3 [- sin (log x)] d/dx (log x) + 4 cos (log x) d/dx (log x)`

= `- 3 sin (log x) xx 1/x + 4 cos (log x) xx 1/x`

Multiplying both sides by x,

`x dy/dx = - 3 sin (log x) + 4 cos (log x)`

Differentiating both sides again with respect to x,

`x d/dx (dy/dx) + dy/dx * d/dx (x) = - 3 cos (log x) d/dx (log x) - 4 sin (log x) d/dx (log x)`

`x (d^2 y)/dx^2 + 1 * dy/dx = - 3 cos (log x) 1/x - 4 sin (log x) * 1/x`

Multiplying both sides by x,

`x^2 (d^2 y)/dx^2 + x dy/dx = - [3 cos (log x) + 4 sin (log x)] = - y `             ....From equation (1)

`=> x^2 (d^2 y)/dx^2 + x dy/dx + y = 0`

or, x2 y2 + xy1 + y = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.7 [पृष्ठ १८४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.7 | Q 13 | पृष्ठ १८४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

log x


Find the second order derivative of the function.

ex sin 5x


Find the second order derivative of the function.

tan–1 x


If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.


If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`


Find `("d"^2"y")/"dx"^2`, if y = log (x).


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


`sin xy + x/y` = x2 – y


sec(x + y) = xy


tan–1(x2 + y2) = a


If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1 


The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.


If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^(2x +1)`


If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×