Advertisements
Advertisements
प्रश्न
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
उत्तर
Given, y = 3 cos (log x) + 4 sin (log x) ...(1)
Differentiating both sides with respect to x,
`dy/dx = 3 d/dx cos (log x) + 4 d/dx sin (log x)`
=` 3 [- sin (log x)] d/dx (log x) + 4 cos (log x) d/dx (log x)`
= `- 3 sin (log x) xx 1/x + 4 cos (log x) xx 1/x`
Multiplying both sides by x,
`x dy/dx = - 3 sin (log x) + 4 cos (log x)`
Differentiating both sides again with respect to x,
`x d/dx (dy/dx) + dy/dx * d/dx (x) = - 3 cos (log x) d/dx (log x) - 4 sin (log x) d/dx (log x)`
`x (d^2 y)/dx^2 + 1 * dy/dx = - 3 cos (log x) 1/x - 4 sin (log x) * 1/x`
Multiplying both sides by x,
`x^2 (d^2 y)/dx^2 + x dy/dx = - [3 cos (log x) + 4 sin (log x)] = - y ` ....From equation (1)
`=> x^2 (d^2 y)/dx^2 + x dy/dx + y = 0`
or, x2 y2 + xy1 + y = 0
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
tan–1 x
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
`sin xy + x/y` = x2 – y
sec(x + y) = xy
tan–1(x2 + y2) = a
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`