हिंदी

The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.

विकल्प

  • 2

  • `(-1)/(2sqrt(1 - x^2)`

  • `2/x`

  • 1 – x2 

MCQ
रिक्त स्थान भरें

उत्तर

The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is 2.

Explanation:

Let y = cos–1(2x2 – 1) and t = cos–1x

Differentiating both the functions w.r.t. x

`"dy"/"dx" = "d"/"dx" cos^-1 (2x^2 - 1)` and `"dt"/"dx" = "d"/"dx" cos^-1x`

⇒ `"dy"/"dx" = (-1)/sqrt(1 - (2x^2 - 1)^2) * "d"/"dx" (2x^2 - 1)` and `"dt"/"dx" = (-1)/sqrt(1 - x^2)`

= `(-1.4x)/sqrt(1 - (4x^4 + 1 - 4x^2)` and `"dt"/"dx" = (-1)/sqrt(1 - x^2)`

= `(-4x)/sqrt(1 - 4x^4 - 1 + 4x^2)`

= `(-4x)/sqrt(4x^2 - 4x^4)`

= `(-4x)/(2xsqrt(1 - x^2)`

⇒ `"dy"/"dx" = (-2)/sqrt(1 - x^2)`

Now `"dy"/"dx" = ("dy"/"dx")/("dt"/"dx")`

= `((-2)/sqrt(1 - x^2))/((-1)/sqrt(1 - x^2))`

= 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ ११५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 93 | पृष्ठ ११५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

log x


Find the second order derivative of the function.

ex sin 5x


Find the second order derivative of the function.

e6x cos 3x


Find the second order derivative of the function.

sin (log x)


If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`


If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`


Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


sec(x + y) = xy


If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.


Derivative of cot x° with respect to x is ____________.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.


Read the following passage and answer the questions given below:

The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3.

  1. Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
  2. Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?

Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×