हिंदी

If x = a cos t and y = b sin t, then find d2ydx2. - Mathematics

Advertisements
Advertisements

प्रश्न

If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.

योग

उत्तर

If x = a cos t, y = b sin t

`dx/(dt)` = – a sin t

`dy/(dt)` = b cos t

`dy/dx = (dy/(dt))/(dx/(dt))`

= `(b cos t)/(-a sin t)`

= `(-b)/a cot t`

`(d^2y)/(dx^2) = b/a "cosec"^2t xx (dt)/dx`

= `b/a "cosec"^2t xx (-1)/(a sin t)`

= `-b/a^2 "cosec"^3t`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

x2 + 3x + 2


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

log x


Find the second order derivative of the function.

x3 log x


Find the second order derivative of the function.

ex sin 5x


Find the second order derivative of the function.

tan–1 x


Find the second order derivative of the function.

log (log x)


Find the second order derivative of the function.

sin (log x)


If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`


If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.


If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = log (x).


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


`sin xy + x/y` = x2 – y


Derivative of cot x° with respect to x is ____________.


If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`


Find `(d^2y)/dx^2, "if"  y = e^((2x+1))`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×