Advertisements
Advertisements
प्रश्न
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.
उत्तर
`tan^-1 [2 cos (2 xx π/6)] + tan^-1 (1)`
= `tan^-1 (2 cos π/3) + π/4`
= `tan^-1 (2 xx 1/2) + π/4`
= `tan^-1 (1) + π/4`
= `π/4 + π/4`
= `π/2`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
sin (tan–1 x), | x| < 1 is equal to ______.
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
If cos–1x > sin–1x, then ______.
The minimum value of sinx - cosx is ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
`"sin"^-1 ((-1)/2)`
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
Find the value of `sin^-1 [sin((13π)/7)]`
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`