Advertisements
Advertisements
प्रश्न
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.
उत्तर
`tan^-1 [2 cos (2 xx π/6)] + tan^-1 (1)`
= `tan^-1 (2 cos π/3) + π/4`
= `tan^-1 (2 xx 1/2) + π/4`
= `tan^-1 (1) + π/4`
= `π/4 + π/4`
= `π/2`
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
The minimum value of sinx - cosx is ____________.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`tan^-1 1/2 + tan^-1 2/11` is equal to
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`