Advertisements
Advertisements
प्रश्न
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
उत्तर
`tan^(-1) (sqrt(1+x^2) -1)/x`
Put ` x = tan theta =>theta = tan^(-1) x`
`:. tan^(-1) (sqrt(1+x^2) - 1)/x = tan^(-1) ((sqrt(1 + tan^2 theta) - 1)/ tan theta)`
`= tan^(-1) ((sec theta -1)/tan theta) = tan^(-1) ((1 - cos theta)/ sin theta)`
`= tan^(-1) ((2 sin^2 theta/2)/(2 sin theta/2 cos theta/2))`
`= tan^(-1) (tan theta/2) = theta/2 = 1/2 tan^(-1) x`
∴ `tan^(-1) (sqrt(1 + x^2 - 1)/(x)) = 1/2 tan^(-1)x`
APPEARS IN
संबंधित प्रश्न
If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The maximum value of sinx + cosx is ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`"tan"^-1 (sqrt3)`
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠EAB = ________.
`tan^-1 1/2 + tan^-1 2/11` is equal to
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.