मराठी

Write the Function in the Simplest Form: `Tan^(-1) 1/(Sqrt(X^2 - 1)), |X| > 1` - Mathematics

Advertisements
Advertisements

प्रश्न

Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`

उत्तर

`tan^(-1)  1/(sqrt(x^2 - 1)`, |x| > 1

Put x = cosec θ ⇒ θ = cosec−1 x

`:. tan^(-1)  1/(sqrt(x^2 - 1)) = tan^(-1)  1/(sqrt(cosec^2 theta - 1))`

`= tan^(-1) (1/ cot theta) = tan^(-1) (tan theta)`

`= theta = cosec^(-1) x = pi/2 - sec^(-1) x`

`[cosec^(-1) x + sec^(-1) x = pi/2]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise 2.2 [पृष्ठ ४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise 2.2 | Q 6 | पृष्ठ ४७

संबंधित प्रश्‍न

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.


Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Write the following function in the simplest form:

`tan^(-1)  x/(sqrt(a^2 - x^2))`, |x| < a


Find the value of `cot(tan^(-1) a + cot^(-1) a)`


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Prove that:

`cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


Solve the following equation:

`2 tan^(-1) (cos x) =  tan^(-1) (2 cosec x)`


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.


Find the value, if it exists. If not, give the reason for non-existence

`tan^-1(sin(- (5pi)/2))`


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Evaluate tan (tan–1(– 4)).


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


Prove that `sin^-1  8/17 + sin^-1  3/5 = sin^-1  7/85`


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


If cos–1x > sin–1x, then ______.


The maximum value of sinx + cosx is ____________.


The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.


The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.


The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


`"tan"^-1 (sqrt3)`


`tan^-1  1/2 + tan^-1  2/11` is equal to


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×