मराठी

Prove `2 Tan^(-1) 1/2 + Tan^(-1) 1/7 = Tan^(-1) 31/17` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`

उत्तर

Tp prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`

L.H.S = `2tan^(-1)  1/2 + tan^(-1)  1/7`

= `tan^(-1)   (2. 1/2)/(1-(1/2)^2) + tan^(-1)  1/7`   `   "                   "[2 tan^(-1) x = tan^(-1)  (2x)/(1-x^2)]`

`= tan^(-1)  1/ ((3/4)) + tan^(-1)  1/7`

`= tan^(-1)  4/3 + tan^(-1)  1/7`

= `tan^(-1)  (4/3 + 1/7) /(1 - 4/3. 1/7)`  `[tan^(-1) x + tan^(-1) y = tan^(-1)  (x + y)/(1 -  xy)]`

`= tan^(-1)  ((28+3)/21)/((21-4)/21)`

= `tan^(-1)  31/17` = R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise 2.2 [पृष्ठ ४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise 2.2 | Q 4 | पृष्ठ ४७

संबंधित प्रश्‍न

Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


Prove that:

`tan^(-1)  63/16 = sin^(-1)  5/13 + cos^(-1)  3/5`


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`


Prove that `tan^-1  2/11 + tan^-1  7/24 = tan^-1  1/2`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to


Evaluate tan (tan–1(– 4)).


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


Prove that cot–17 + cot–18 + cot–118 = cot–13


Prove that `sin^-1  8/17 + sin^-1  3/5 = sin^-1  7/85`


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:


The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


`"sin"^-1 (1/sqrt2)`


`"cos"^-1 (1/2)`


`"sin"^-1 ((-1)/2)`


If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.


Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-


`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to


Find the value of `sin^-1 [sin((13π)/7)]`


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×