Advertisements
Advertisements
प्रश्न
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
उत्तर
Tp prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
L.H.S = `2tan^(-1) 1/2 + tan^(-1) 1/7`
= `tan^(-1) (2. 1/2)/(1-(1/2)^2) + tan^(-1) 1/7` ` " "[2 tan^(-1) x = tan^(-1) (2x)/(1-x^2)]`
`= tan^(-1) 1/ ((3/4)) + tan^(-1) 1/7`
`= tan^(-1) 4/3 + tan^(-1) 1/7`
= `tan^(-1) (4/3 + 1/7) /(1 - 4/3. 1/7)` `[tan^(-1) x + tan^(-1) y = tan^(-1) (x + y)/(1 - xy)]`
`= tan^(-1) ((28+3)/21)/((21-4)/21)`
= `tan^(-1) 31/17` = R.H.S
APPEARS IN
संबंधित प्रश्न
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Evaluate tan (tan–1(– 4)).
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Prove that cot–17 + cot–18 + cot–118 = cot–13
Prove that `sin^-1 8/17 + sin^-1 3/5 = sin^-1 7/85`
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`"sin"^-1 (1/sqrt2)`
`"cos"^-1 (1/2)`
`"sin"^-1 ((-1)/2)`
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
Find the value of `sin^-1 [sin((13π)/7)]`
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.