मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Prove that tan-1x+tan-1 2x1-x2=tan-1 3x-x31-3x2,|x|<13 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`

बेरीज

उत्तर

`tan^-1x + tan ((2x)/(1 - x^2)) = tan^-1 [(x +  (2x)/(1 - x^2))/(1 - x((2x)/(1 - x^2)))]`

= `tan^-1 [((x(1 - x^2) + 2x)/(1 - x^2))/((1 - x^2 - 2x^2)/(1 - x^2))]`

= `tan^-1 [(x - x^3 + 2x)/(1 - 3x^2)]`

= `tan^-1 [(3x - x^3)/(1 - 3x^2)]`

If `3x^2 < 1`

⇒ `x^2 < 1/3`

⇒ `|x| < 1/sqrt(3)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.5 [पृष्ठ १६६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 4 Inverse Trigonometric Functions
Exercise 4.5 | Q 7 | पृष्ठ १६६

संबंधित प्रश्‍न

Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


Write the following function in the simplest form:

`tan^(-1)  (sqrt(1+x^2) -1)/x, x != 0`


Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Solve the following equation:

`2 tan^(-1) (cos x) =  tan^(-1) (2 cosec x)`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Choose the correct alternative:

sin(tan–1x), |x| < 1 is equal to


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of  `"sec" theta + "tan" theta` is ____________.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


`"sin"^-1 ((-1)/2)`


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×