Advertisements
Advertisements
Question
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Solution
`tan^-1x + tan ((2x)/(1 - x^2)) = tan^-1 [(x + (2x)/(1 - x^2))/(1 - x((2x)/(1 - x^2)))]`
= `tan^-1 [((x(1 - x^2) + 2x)/(1 - x^2))/((1 - x^2 - 2x^2)/(1 - x^2))]`
= `tan^-1 [(x - x^3 + 2x)/(1 - 3x^2)]`
= `tan^-1 [(3x - x^3)/(1 - 3x^2)]`
If `3x^2 < 1`
⇒ `x^2 < 1/3`
⇒ `|x| < 1/sqrt(3)`
APPEARS IN
RELATED QUESTIONS
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Evaluate tan (tan–1(– 4)).
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
If 3 tan–1x + cot–1x = π, then x equals ______.
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Domain and Range of tan-1 x = ________.
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.