Advertisements
Advertisements
Question
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Solution
`tan^(-1) (x - 1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4`
`=> tan^(-1) [((x-1)/(x-2) + (x +1)/(x +2))/(1 - ((x-1)/(x-2))((x + 1)/(x+2)) ]] = pi/4` `[tan^(-1) x + tan^(-1) y = tan^(-1) (x+y)/(1-xy)]`
`=> tan^(-1) [((x-1)(x+2)+(x+1)(x-2))/((x + 2)(x-2) - (x - 1)(x + 1)]] = pi/4`
`=> tan^(-1) [(x^2 + x - 2 + x^2 - x- 2)/(x^2 - 4 - x^2 + 1)] = pi/4`
`=> tan^(-1) [(2x^2 - 4)/(-3)] = pi/4`
`=> tan[tan^(-1) (4 - 2x^2)/3] = tan pi/4`
`=> (4- 2x^2)/3 = 1`
`=> 4 - 2x^2 = 3`
`=> 2x^2 = 4 - 3 =1`
`=> x = +- 1/sqrt2`
Hence, the value of x is `+- 1/sqrt2`
APPEARS IN
RELATED QUESTIONS
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Prove that cot–17 + cot–18 + cot–118 = cot–13
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
The maximum value of sinx + cosx is ____________.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
sin (tan−1 x), where |x| < 1, is equal to:
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`"cos"^-1 (1/2)`
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.