English

Find the value of the following: tan-1[2cos(2 sin-112)] - Mathematics

Advertisements
Advertisements

Question

Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`

Sum

Solution

`tan^-1 [2  cos (2  sin^-1 1/2)]`

`Rightarrow sin^-1 1/2 = x`

`Rightarrow sin x = 1/2 = sin (pi/6)`

`therefore sin^-1 pi/6`

`Rightarrow tan^-1 [2  cos (2 xx sin^-1 1/2)]`

`= tan^-1 [2  cos (2 xx pi/6)]`

`Rightarrow tan^-1 [2  cos (pi/3)]`

`= tan^-1 [2  xx 1/2]`

`Rightarrow tan^-1 1`

`= pi/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise 2.2 [Page 48]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise 2.2 | Q 11 | Page 48

RELATED QUESTIONS

Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`


Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


The maximum value of sinx + cosx is ____________.


If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of  `"sec" theta + "tan" theta` is ____________.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.


The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.


Solve for x : `"sin"^-1  2"x" + "sin"^-1  3"x" = pi/3`


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.


`tan^-1  1/2 + tan^-1  2/11` is equal to


Find the value of `sin^-1 [sin((13π)/7)]`


Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×