English

Prove that tan-1(1+x2+1-x2(1+x2)-1-x2)=π2+12cos-1x2 - Mathematics

Advertisements
Advertisements

Question

Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`

Sum

Solution

L.H.S. `tan^-1 [(sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2 - sqrt(1 - x^2)))]`

Put x2 = cos θ

∴ θ = `cos^-1 x^2`

⇒ `tan^-1 [(sqrt(1 + cos theta) + sqrt(1 - cos theta))/(sqrt(1 + cos theta) - sqrt(1 - cos theta))]`

⇒ `tan^-1 [sqrt(2cos^2  theta/2 + sqrt(2sin^2  theta/2))/(sqrt(2cos^2  theta/2 - sqrt(2sin^2   theta/2)))]`  ......`[(because 1 + cos theta = 2 cos^2  theta/2),(1 - cos theta = 2 sin^2  theta/2)]`

⇒ `tan^-1 [(cos  theta/2 + sin  theta/2),(cos  theta/2 - sin  theta/2)]`

⇒ `tan^-1 [(1 + tan  theta/2),(1 - tan  theta/2)]`  ......[Dividing the Nr. and Den. by cos θ/2]

⇒ `tan [tan(pi/4  theta/2)]`  ......`[because (1 + tan theta)/(1 - tan theta) = tan(pi/4 + theta)]`

⇒ `pi/4 + theta/2`

⇒ `pi/4 + 1/2 cos^-1 x^2` R.H.S. ......[Putting θ = cos–1x2]

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise [Page 36]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise | Q 12 | Page 36

RELATED QUESTIONS

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Prove the following: 

`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


Solve the following equation:

`2 tan^(-1) (cos x) =  tan^(-1) (2 cosec x)`


sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


If 3 tan–1x + cot–1x = π, then x equals ______.


If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of  `"sec" theta + "tan" theta` is ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


`"sin"^-1 (1/sqrt2)`


`"tan"^-1 (sqrt3)`


`"cos"^-1 (1/2)`


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Domain and Range of tan-1 x = ________.


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.


If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×