Advertisements
Advertisements
Question
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
Solution
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
`=> tan^(-1) ((2 cos x)/(1- cos^2 x)) = tan^(1) (2 cosec x)` `[2 tan^(-1) x = tan^(-1) (2x)/(1-x)]`
`=> (2 cos x)/(1 - cos^2 x) = 2 cosec x`
`=> (2 cos x)/(sin^2 x) = 2/sin x`
=> cos x = sin x
=> tan x = 1
`:. x = pi/4`
APPEARS IN
RELATED QUESTIONS
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
sin (tan−1 x), where |x| < 1, is equal to:
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠EAB = ________.
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.