English

Prove `(9π)/8 - 9/4 Sin^(-1) 1/3 = 9/4 Sin^(-1) (2sqrt2)/3` - Mathematics

Advertisements
Advertisements

Question

Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`

Solution

L.H.S  = `(9pi)/8 - 9/4 sin^(-1)  1/3`

`= 9/4 (pi/2 - sin^(-1)  1/3)`

`= 9/4 (cos^(-1)  1/3)`     ....(1)  `[sin^(-1)x + cos^(-1) x = pi/2]`

Now, let `cos^(-1)  1/3 = x` Then, `cos x  =  1/3 => sin x  =  sqrt(1 -  (1/3)^2) = (2sqrt2)/3` 

`:. x = sin^(-1) (2sqrt2)/3 =>  cos^(-1)  1/3 = sin^(-1)  (2sqrt2)/3`

:. L.H.S =  `9/4 sin^(-1)  (2(sqrt2))/3` = R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise 2.3 [Page 52]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 12 | Page 52

RELATED QUESTIONS

 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.


Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Solve the following equation:

`2 tan^(-1) (cos x) =  tan^(-1) (2 cosec x)`


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Find: ∫ sin x · log cos x dx


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Evaluate `tan^-1(sin((-pi)/2))`.


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Prove that cot–17 + cot–18 + cot–118 = cot–13


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


If 3 tan–1x + cot–1x = π, then x equals ______.


If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.


If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×