English

If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______. - Mathematics

Advertisements
Advertisements

Question

If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.

Options

  • 0

  • 1

  • 6

  • 12

MCQ
Fill in the Blanks

Solution

If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals 6.

Explanation:

We have cos–1α + cos–1β + cos–1γ = 3π

⇒ cos–1α + cos–1β + cos–1γ = π + π + π

⇒ cos–1α = π, cos–1β = π and cos–1γ = π

⇒ α = cos π, β = cos π and γ = cos π

∴ α = – 1, β = – 1 and γ = – 1

Which gives α = β = γ = –1

So α(β + γ) + β(γ + α) + γ(α + β)

⇒ (– 1)(– 1 – 1) + (– 1)(– 1 – 1) + (– 1)(– 1 – 1)

⇒ (– 1)(– 2) + (– 1)(– 2) + (– 1)(– 2)

⇒ 2 + 2 + 2

⇒ 6

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise [Page 39]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise | Q 35 | Page 39

RELATED QUESTIONS

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Prove the following: 

`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`


Write the following function in the simplest form:

`tan^(-1)  x/(sqrt(a^2 - x^2))`, |x| < a


Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Solve  `tan^(-1) -  tan^(-1)  (x - y)/(x+y)` is equal to

(A) `pi/2`

(B). `pi/3` 

(C) `pi/4` 

(D) `(-3pi)/4`


If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`


Find the value of the expression in terms of x, with the help of a reference triangle

cos (tan–1 (3x – 1))


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Prove that `tan^-1  2/11 + tan^-1  7/24 = tan^-1  1/2`


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.


The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.


The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"sin"^-1 (1/sqrt2)`


`"sin"^-1 ((-1)/2)`


If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.


`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×