Advertisements
Advertisements
Question
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Solution 1
To prove: `3cos^(-1) x = cos^(-1) (4x^3 - 3x), x in [1/2, 1]`
Solution 2
To prove `3cos^(-1) x = cos^(-1) (4x^3 - 3x), x in [1/2, 1]`
Let x = cosθ. Then, cos−1 x = θ.
We have,
R.H.S = `cos^(-1)(4x^3 - 3x)`
`= cos^(-1)(4cos^3 theta- 3cos theta)`
`= cos^(-1)(cos 3theta) = cos^(-1)(4x^3 - 3x)`
`= 3theta = cos^(-1)(4x^3 - 3x)`
`= 3cos^(-1) x = cos^(-1)(4x^3 - 3x)`
L.H.S
APPEARS IN
RELATED QUESTIONS
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Evaluate `tan^-1(sin((-pi)/2))`.
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
If cos–1x > sin–1x, then ______.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
`"sin"^-1 ((-1)/2)`
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`